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THE NONLINEAR MEMBRANE SHELL WITH
APPLICATION TO NONCIRCULAR CYLINDERS

A VINOAM LmAlt

Department of Aeronautical Engineering. Technion·lsraellnstitute of Technology. Haifa. Israel

AlJetrad-The nonlinear membrane problem is presented in terms of the curvatures and stresses (or strains) as
field variables. As a part of the fonnulation. appropriate boundary conditions are studied.

The significant features of the equations are discussed. Among the topics are included: dependence on initial
shape, types of equations, ability to clarify anomalities of the linear membrane problem, stability and the memo
brane edge effect problem. A perturbation series scheme for the solution of the equations is also presented.

The usefulness of the theory in solving practical problems is demonstrated by presenting a solution to the
problem of the noncircular cylindrical membrane shell under lateral pressure.

INTRODUCfION

ThE stress (strain)-curvature formulation of the shell problem bas some advantages which
make it particularly attractive for nonlinear studies: the simple and intrinsic formulation,
symmetry of the equations, the ease of establishing the small strain approximation and the
direct geometrical meaning attached to the field variables during the deformation process.

It suffers, though, from an important disadvantage in that it is difficult to assign to it
geometrical boundary conditions. One of the objectives ofthis paper is to present a stress
curvature approach to the nonlinear membrane problem which includes a formulation of
appropriate boundary conditiolls-both geometric and static. It is intended to show that
this approach can be made as useful as the displacement approach (1J and should be
regarded as complementary to it.

A second objective of this paper is to introduce a perturbation-type solution to the
problem of the closed noncircular cylindrical membrane under lateral pressure. It is
appropriate to introduce it through a short discussion of the corresponding linear problem
and its limitations.

The cylindrical surface is defined by the variable radius of curvature R(s) of the closed
plane curve forming its contour. Measured distance along the curve defines the coordinate
s. The length of the cylinder along the generator is 2L and the corresponding distance
coordinate is x.

Let u, v, wbe displacements in the x, s and inward normal directions, respectively. Let
,fxx , nlS and "x' be the membrane stress resultants. The shell thickness is h, E and v are the
elastic constants and p is the normal pressure loading on the shell.

The shell is supported at x = ±L by frames which are rigid in their plane but offer no
out-or-plane resistance. The corresponding boundary conditions are:

nXX = 0; v = 0 at x = ±L.

t On leave from the Israel Aircraft Industries. Lod Airport, Israel.
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The linear membrane equations for this problem are well known [4, pp. 169-172]. The
solution is :

(1)

(2)

(3)

The expression for the normal displacement is :

(4)

where the comma denotes partial differentiation.
The solution bas the following limitations:
1. Experimental evidence and physical reasoning demand that as the length of the

noncircular cylinder increases, its shape and state of stress far from the supports will
approach those of a circular cylindrical shell. These requirements are not met by the solu
tion, and the results even increase beyond all bounds as L increases.

2. The solution requires the continuity of the derivatives of R(s) up to and including
the fourth. It is therefore sensitive to local irregularities which. in a real shell, should be
smoothed out by the pressure. The "mathematical" reason is the need for repeated differen
tiation with respect to s in the solution process, but there is no physical mechanism to
support this demand.

3. Boundary conditions along the straight generators cannot be accommodated
(important for open shells).

This behavior of the oval shell is well known and corrections have been applied by the
introduction of bending effects. Examples are the semi-membrane theory of Vlasov and
Novozhilov [4, pp. 2S4-2S9] or the oval shell studies [4, pp. 239-254, 9].

The problem will be approached later by the introduction of nonlinear membrane
effects. For an order-of-magnitude comparison, the parameter

(5)

can be taken as a measure of the ratio of nonlinear-membrane to bending corrections in the
equilibrium equations. Here t1 is a representative membrane stressand..l. is a "differentiation
length" of the bending correction. In this respect, linear membrane theory failures may be
classified as follows:

(a) Edge effect failures

Here A. -- .J(Rh) and therefore

(6)
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For many practical structures Jl. would be of order 1 and both effects would be important.
A discussion of this case for the axisymmetric torus and circular cylinder is presented, for
example, in [3].

(b) Failure in the large

Corrections to linear membrane theory are to be applied to large areas of the shell.
Here, A. "'- R (stability is excluded) and then

(7)

Many if not most aeronautical structures have a large Jl. and nonlinear membrane effects
dominate. The noncircular cylinder problem falls in this class.

THE BASIC EQUAnONS

(8)

(9)

(11 )

(10)

n,zPb,zp = P

1 02,' 116b b ~V2,z _ K (1 _1- v 02)'!e e 0211 y6+ Eh 1102 - 0 Eh 1102

ePY[b,zply-b9p(e:ly+e~I,z-e,zl)] = 0

The use of the metric (a,zp) and curvature (b,zp) tensors of a surface (or their increments)
as variables for the purpose of formulating the shell problem is well established. This
approach, usually in an incremental form, has been used for several shell studies [10-13].
It is adopted in this study but with a difference in that increments are taken in the metric
(strains) but not in the curvatures.

For details of the derivations the reader is referred to the above references and to [20].
The resulting equations are as follows:

n"~I,z+ n"Il(2~19 - e..ttlP) = 0

(12)

where n,zp is the symmetric stress-resultant tensor, b,zp is the curvature tensor and p is the
normal pressure per unit area. All are related to the deformed surface.

Tensorial operations are performed with respect to the metric a,zp of the undeformed
surface with permutation tensor e,zp and Gaussian curvature K o. A single bar denotes
covariant differentiation with respect to the a,zp and V2 is the surface Laplacian. The
notations are essentially those of [14].

In addition e,zp denotes the strain tensor defined by

e,zp = !(Q,zp - a,zp)'

It is related to the stress tensor by Hooke's law:

1 d
e,zp = Eh (Q,zyQP6 - vea,epd)nY .

The basic important assumption made in the derivations is that the strains are small. This is
valid for most practical applications.
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Equations (SHU) serve as the basic system of equations for the nonlinear membrane
problem. The unknowns in the equations are the six quantities n~/J and bll/J as functions
of the convected coordinates u~. The data for the equations are the metric all/J of the un
deformed state, the loading p, the elastic constants E, v and the shell thickness h. The equa
tions constitute a sixth order partial differential system.

BOUNDARY CONDITIONS

When a shell problem is formulated in terms of stresses and curvatures, it becomes
essential to be able to express physically meaningful boundary conditions (static, geometric
or mixed) in terms of these quantities.

The most important type of support which is characterized by stresses (loads) and
curvatures is the beam support. It is one of the more common types of supports for shells,
but since it is difficult to handle by the displacement formulations-especially in the
nonlinear range-it is usually avoided by idealizations.

The beam as a one-dimensional structural entity appears to be a rather natural boundary
for a shell which is a two-dimensional structural entity. In this case, the ordinary differential
equations of the beam formulated in terms of the static and geometric quantities of the
shell at the boundary, become the boundary conditions of the shell. Limiting values of the
beam rigidities serve as the rigid support on one hand and the free edge on the other hand.

It is convenient to regard the boundary beam as an oriented curve (strip) in space.
The geometry of strips is presented, for example, in [21, chapter 3]. Indeed, letting u1

and U2 be unit vectors in the two principal inertia directions of the beam and letting t be the
unit tangent to the boundary curve, such that u2 = t X u1 , then the material triad thus
defined ("principal inertia triad") gives the orientation of the strip. It deforms with the
beam and rotates together with the rotation of its cross sections. The following relations
then hold [20,21]:

(13)

(14)

(15)

The quantities "1 and "2 may be regarded as "normal curvatures" of the curve and Oil
is its "torsion" with respect to the triad. Ifone adds to these quantities the state ofextension
of the curve, measured by the strain 8s along it, then the four quantities ("1; "2; OIJ; es) as
functions ofdistance s measured along the curve completely determine the state of the strip
(beam) during a deformation process.

In order to relate the properties of the beam to the properties of the surface at the
boundary, it is convenient to construct along the boundary curve another triad with the
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following unit vectors:

N unit normal to the surface along the curve;

u == txN;

t unit vector tangent to the curve.

The differential equations of the "surface oriented" triad are:

dN
-== -Kt-Ouds n s

dt
- == K..N +K uds g

du
- == OsN -K tds g
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(16)

(17)

(18)

where "II' "r and 6, are the normal curvature, geodesic curvature and torsional curvature
of the surface along the boundary curve, respectively.

Let the surface oriented triad make an angle {3 wjth the material triad such that
N . u1 == cos {3. Then [21, p. 74J

"1 == KII cos {3 + Kg sin {3

"2 == -"nsin{3+Kgcos{3

(19)

(20)

(21)

It is possible to relate the properties of the surface-oriented curve to the metric ii/l/l
and curvatures b/l/l of the surface at the boundary. Taking the boundary as the parametric
line u2 == c of the surface (similar relations exist for u1 == c). Then:

"II == (ii l1)-lb l1 ~ a~/bl1(1-2f:,)

Kg == (ii)t(ii ll)-tril ~ atai}/2[ril(1+e:-3e,)+2eill-ellI2J

01 == (ii)t(ii ll)-lbi ~ ata~/bi(1+e:-2f:,)

(22)

(23)

(24)

(25)

Here Q/l/l; a = det(a/l/l) and the Christoffel symbols fPl' are related to the undeformed state.
All other quantities belong to the deformed state. The equations are linearized in the
strains e/l/l'

The first two expressions are well known from differential geometry [16, pp. 80, 130J.
The third is obtained from the Weingarten equations [14, equation (1.13.47)J and the
definitions of u and 61 , The fourth is the obvious relationship between the differential
of length along the curve and the surface metric.
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(28)

(26)

(27)

The equilibrium equations of the boundary beam are constructed with respect to the
principal inertia system. Their derivation is standard and will not be repeated here (for
further details see [20]). The final form is:

dF (dM 1 ) (dM 2 )ds +K1 ~-ObM2 -K2 ~+ObMl = -(nT+KNmT)+PT

d (dM 1 ) (dM2 )ds ~-ObM2 +K2MT -Ob ~+ObMl+K1MT -KiF

= (qN - ~T) cos 13 +(nN+01"7-) sin P+Pi

d (dM 2 ) (dM 1 )ds ---cr.;-+0~1 +K1MT +Ob ---cr.;--8bM 2+K2MT +K2F

= (qN-~) sin fJ-(nN+8.mT) cos fJ-P2

(29)

where
F is the normal force in the beam ;
M t , M 2 are the bending moments in the beam;
nT' nN are the shell membrane stress resultants at the boundary, and in the directions

parallel and normal to it;
mT' mN are the shell twisting and bending moments at the boundary;
qN is the transverse shear of the shell at the boundary;
PT, Pi' P2, P'" are additional external loads and moments on the beam in the cor

responding directions (if any).
Assuming now that the beam behaves according to strength-of-materials theory, the

beam static quantities may be expressed in terms of its geometric increments as follows:

M 1 =Elt .1K1 (30)

M 2 =EI2 .1K2 (31)

F = EAe. (32)

M T = GJ .10b (33)

where Ell' EI 2 , EA, GJ are the beam bending, extensional and torsional rigidities respec
tively. The symbol .1 denotes the difference in a given quantity between the deformed and
the initial states.

Substitution of(30H33) and (l9H2l) into (26H29) yields four differential equations in
the shell quantities (n.,nr,q.,m., mT ,K.,K,,8., OJ and the auxiliary parameter 13. These
equations constitute the boundary conditions for the most general beam-type support.

The development so far did not differentiate between bending and membrane theories.
The distinction can be made now since classic:al bending theory requires rotational con
tinuity between the shell and its boundary beam, leadins to the additional boundary
equation:.1fJ = O. Nonlinear membrane theory, on the other hand, imposes only positional
but no rotational continuity between the shell and its boundary beam. In such a case 13 is
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unrestricted and its elimination (in principle) from the four equations (26H29) leaves only
three effective boundary conditions for imposition on the shell (as against four in the
bending case). In addition, the bending quantities m., mT and q. are henceforth taken out
of the equations. Substantial simplification of the boundary equations (26H33) can be
obtained for special cases or if further assumptions are made. A detailed discussion is given
in [20] where such topics as rigid support, free edge, linearization, weak curvatures, adap
tive edge beams and non-beam-type conditions are considered. Alternatively, one may
follow the approach of the example given in this paper and reduce the equations by using
the properties of the particular problem at hand. This second approach possesses the
important advantage of understanding the physical meaning and various possibilities at
each step.

THE PERTURBATION SERIES APPROACH

A convenient approach to studying the equations and to obtaining approximate
solutions of the nonlinear system presented above is that of a perturbation series about a
known solution (see also [1]). A nonlinear partial differential system can be classified
(e.g. elliptic, parabolic, hyperbolic) only with respect to a given solution and in its neigh
bourhood. The first term in the perturbation scheme can therefore be used to study the
behaviour of the nonlinear membrane problem in the neighbourhood of any point in the
solution domain. Such a point (which need not be the undeformed state) is specified by the
values of the curvature b,qJo and stress n"r/ tensors. Let e be any single quantity which can
describe the variation of the solution about the point. A perturbation scheme may be
started from the known point by expanding the variables in series. in e. Thus:

co

ntt./J = nCf + L n':/!e'"
1

co

btt./J = btt./JO + Lbtt./J"'e'"
1

(34)

(35)

and so forth. Here and in the following, the naught index refers to the known solution.
Substituting into (SHU) and separating equal powers in e, sets of linear differential

equations and boundary conditions are obtained, with the "naught" solution functions
appearing as coefficients in the equations. (For details, see [20].) Higher perturbation
equations can be easily obtained too. It is observed that their homogeneous parts are
exactly the same as those of the first perturbation with n':/! and b"'/J'" replacing n~fJ and
bllfJ, as variables.

For simplicity, the linearized system will be examined specifically for the class ofcylindri
cal surfaces. It will be assumed that the point of expansion is the cylindrical surface of the
introduction under a constant state of stress. This can be realized, for example, by applying
constant edge loads to the shell. Based on the linearized equations one may use a stress
function defined by (see example for a more refined definition) :
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Substitution and use of an elimination process lead to an equation of the form:

2 1 j' 4 1
buoljJ,xXJCx- Eh ndV ljJ'ij+ Eh[lower order termsJ = b.sopl,xx· (36)

For more details, see example or [20J. A similar elimination process for the general shell is
complicated by the variable metric and stress fields. However, that in so far as the leading
terms (highest order derivatives) are concerned, the features of the process are preserved.
In order to establish the nature of the equations, the following partial differential operators
are defined:

V4 F = FI:~ = surface biharmonic operator

LbF = s"'YsIl6b"'/loFI Y6 = curvature operator

. 1
L"F = -n't/FI"'/I = stress operator.

Eh

The equation of the first perturbation for the general membrane would then read (in
principle) :

(Lt - L"V4 )ljJ +[lower derivatives termsJ = LbPl'

DISCUSSION

(a) Nature of the equations

The behaviour of the nonlinear membrane problem near a given solution is governed
by the three partial differential operators L"V2V2

• The system is therefore always twice
elliptic, because of the biharmonic operator, but the stress operator L" may be elliptic,
parabolic or hyperbolic, depending on whether det(n't/) is greater than, equal to or smaller
than zero. The situation is essentially different from linear membrane theory where the
nature of the equations depends heavily on the undeformed curvatures.

As a result, the number ofboundary conditions on each boundary ofthe shell and in the
neighborhood ofa given solution depends on det(n't!). At least two may be specified around
the shell. If det(n't!) > 0 then a third condition should also be specified around the shell.
Otherwise the arrangement of the third condition should depend on the properties of the
region and initial stress field, as discussed in text books on partial differential equations [17].
For example, a state ofbiaxial tension is elliptic, pure shear is hyperbolic, whereas a uniaxial
stress field is parabolic.

For most structures and materials, the inequality n~« Eh holds. The operators
L"V2V2 have consequently a very small coefficient. This implies an increase in the order
and nature of a partial differential system (linear membrane theory about the initial shape)
through the addition of a higher order partial differential operator with small coefficients
(nonlinear effects). This situation, which is similar to the addition of the bending effects
to linear membrane theory, has been noted before and used to obtain solutions of dis
continuity and edge effect problems within the framework of the membrane state of stress,
mostly for axisymmetric problems of shells of revolution [3,6,8,5,1 and othersJ. The
relative merits of the stress operator as against the bending operator, has been discussed,
among others, by Jordan [3]. It is noted that even though the membrane operator is of
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lower order than the bending operator, its coefficients are substantially larger for usual
thin walled structures (increasing approximately as R/h) and this should make it an im
portant contributor to any correction to linear membrane theory.

In addition to its use as "boundary fixer", nonlinear membrane theory has important
uses when the linear theory fails over large regions of the shell. Such is the case when
substantial deformations occur which necessitate consideration of their effect on equili
brium, when an inextensional deformation field is superposed on a loaded shell, etc. Some
of the effects and contributions of the nonlinear membrane state of stress are shown in
the example.

(b) Classes ofshells

It is observed that the curvatures of the unloaded shell do not appear in the formulation
of the nonlinear membrane problem. This implies that any group of surfaces which are
geometrically applicable to each other have identical equations for their membrane
behaviour. Such a class is, for example, that of developable surfaces and, in particular,
cylindrical surfaces.

When a solution to a membrane problem is sought in terms of the perturbation series,
the seemingly obvious choice for expansion is the unloaded, underformed shell. This point,
though, is usually not acceptable if boundary corrections are to be applied. The reason is
that the unloaded shell is a degenerate point in the solution domain since the stress-operator
vanishes there and the order ofthe equations reduces then from sixth to fourth. In addition,
in some cases, the expansion may be of the wrong type for the boundary conditions at hand
(the type depends in such a case on the sign of the Gaussian curvature K o of the under
formed surface) and may also be sensitive to discontinuities in the data (see example). The
next choice is to take a loaded shell acting on an approximately underformed geometry
(nt :F 0; bep = bepo)' This may be acceptable if the corresponding membrane problem is
well posed. The nt may be taken from the linear solution. This choice loses its advantages
when the expected deformations are not small, when the boundary is deforming too, when
the nature of the differential system changes during the deformation process and in cases
when the linear problem cannot be solved. Other surface configurations within the class
may then be chosen, depending on expected behaviour, convergence considerations and
convenience (see cylindrical shell example). In some cases of ill posed problems the per
turbation series approach may even fail and resort would have to be made to singular
perturbation techniques. It is suggested that some failures of expansion about an unloaded
state with the pressure as a parameter or of stability analyses may be of this nature.

(c) Uniqueness and stability

The uniqueness of the perturbation expansion about a point (nt, bellO) depends on the
behaviour of the homogeneous part of the first perturbation equations (with corresponding
homogeneous boundary conditions). A point for which nontrivial solutions to be equations
do not exist, is-stable in the membrane sense. A set of stable points is a stable region in the
solution domain. It is suggested that this type of stability is tied to the usual shell stability
problem: when a point is unstable in the membrane sense, then it will buckle at some finite
shell thickness. The buckling thickness can be predicted by bending theory only, but the
determination of the stability regions is a membrane problem.
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It has been stated that the criterion for the stability regions is the occurrence of a
negative principal stress-resultant. This is not obvious from the perturbation equation. A
case at hand is the cylindrical shell where tension in one direction influences the critical
load in the second direction. Hence, it is necessary to establish for each particular case the
boundaries ofthe stability region. The points ofperturbation expansions can be chosen only
from stable regions.

A point may be raised here as to the relative roles of the membrane and bending effects
in shell stability analysis. Ifa stability analysis is attempted solely with the membrane part
of the shell equations, it is found that a solution is impossible, as analysis of the stability
equations for the cylindrical shell shows. What happens is that the critical load is mode
dependent, decreasing in value with the increase in the number of waves and approaching
zero as the wave index mgoes to infinity. Amechanism which acts in the opposite direction
e.g. being able to absorb more loads as the number of waves increases-should therefore
be added as a necessary part of the stability equations. This mechanism is provided by the
bending terms which react in proportion to the changes-in.curvature and therefore increase
their resistance as m increases. The balance (critical load) is reached when the bending
effects become just sufficient to change the downward trend of the p-m curve of the mem
brane part. This cannot occur, however, before the "differentiation length" of the waves A.
(see Introduction) is such that the bending effects reach the same order of magnitude as
membrane effects. But since in a very thin shell the coefficients of the bending effects are
much smaller than those of the membrane effect, it follows that the characteristic wave
length will be much smaller than the surface characteristic lengths. Therefore the bending
effect is in such cases mostly a local effect which is not significantly influenced by overall
shell geometry or boundary conditions.

One may thus view the shell stability problem as a nonlinear membrane problem with
an additional local mode-sensitive mechanism to offset the downward trend of the p-m
curve. It is suggested that the difference between one shell and the other, one boundary
condition and the other for the thin shell is expressed mostly in the membrane part and
much less so in the bendin. part. This behaviour agrees with studies of the stability of thin
cylindrical shells which show more sensitivity to variations in the membrane boundary
conditions than to variations in the bending boundary conditions [18].

EXAMPLE: THE NONCIRCVLAR CYLINDRICAL SHELL
UNDER LATERAL PRESSURE

The geometry and properties of the shell are given in the introduction. The support
conditions of the shell at x = ±L are given by the following boundary ring properties :

EA = Ell = 00; Elz = GJ = 0; Po = o.

The case represents rings which are stiff in their plane (which is normal to the shell) but
have negligible torsional and out-of-plane stiffnesses. Expression in terms of boundary
beam variables [equations (30H33)] yields:

(37)
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The following notations are now introduced:

S = perimeter of the underformed contour;

Ro = S121C == radius of the isoperimetric circle;

~ = xlL (- 1 :s; ~ :s; 1);

[N",N,.NJ = 1/Eh[n"X,n"',n's:J;

a = RoiL;

Xl = M1/EhR~;

p = pRolEh;

933

The use of p as a variable offers some advantages over the more common use of K•• Noting
that the x-s system is Cartesian, equations (8H12) become:

aN",~+N,.,,+aNJ,N,,- vN.),~+2N,(Nx- vNJ,,,+N.[2(l + v)N,..,-a(N.- vNJC)'~] = 0 (38)

a.N,,£ +N ••"+NJ-N.- vN"),,,+2«N~N.- vN,,),~+N,,[2(1 + v)o:N,,~-(Nx-vNJ,,,] = 0 (39)

pN"K" +2pN,K, +N. = pp(40)

pl(",,,-apK,.~- pK,,(N,,- vN.),,,-a.pK,(l +v)(N.- N x),~+ 20:(1 + v)N,,(

-(N"-vN.),,, = 0 (41)

+o:p(N. - vN.,), ~ = 0 (42)

(a) Boundary conditions
Substitution of (37) into (29) gives

Excluding special cases (e.g. axisymmetric problem), the branch M 1 = 0 is not accepted
because of the infinite rigidity in the U1 direction. Therefore K;z == O.

In cases where a strong boundary-layer does not exist near the supports, the equations
simplify further since K, which involves only strain derivatives must be small. It follows from
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(19) and (20) that fJ must be small too and the boundary conditions reduce after elimination
to:

R(rl)
p=

Ro

Cs = 0

p[p(M,,,,,-K;M)],,,+M,,, = -pN,

(K,M),,,+K,M,,, = -N" •

(44)

(45)

(46)

(47)

with M acting as an auxiliary parameter. The number of effective conditions is three.
Of all the conditions, (45) is apt to cause edge-effect-type disturbances. This has been

demonstrated [5, 19] for the axisymmetric case. Indeed, in this case one obtains from the
general equations:

Ns-vN" = 0; N, =0;

The case N" = 0 is now unacceptable since it contradicts (40) and therefore cos fJ = 0 or
fJ := n12. But now K, must be large, implying large strain rates at the boundary which are
typical of the membrane edge effect case.

The nonaxisymmetric problem is more complicated but leads to essentially the same
situation. The corresponding physical problem of a pressurized cylindrical membrane
which is prevented from expanding at its boundary is well known.

(b) The perturbation series

I~ order to obtain an approximate solution to the nonlinear shell problem defined
above, a solution is sought in terms ofa perturbation series about a convenient point in the
solution domain.

Expansion about the underformed state is ruled out since it produces linear membrane
theory as its first perturbation, with all the disadvantages listed in the Introduction.
Attention is therefore focused on the second limiting point in the solution domain of the
equations-that of the circular cylinder. This point has the advantage of being approached
by all noncircular cylinders as the pressure or the length increase. In addition, the resulting
perturbation equations are with constant coefficients.

The process of expansion about the circular shape has a direct physical meaning: given
a closed cylindrical sheet with perimeter S but with an unspecified contour, one may
"produce" the loaded shell by two distinct methods: (a) first form the contour and then
load the shell; (b) first load the shell and then form the contour. The first approach is
represented by expanding around the original shape while the second is represented by
expanding around the circular shape.

The perturbation equations about the circular shape are in this case once parabolic.
Hence only two out of the three boundary conditions can be satisfied. The condition on es
is therefore dropped. This is not considered to be very important since the e. condition
results, as noted before, in a "boundary layer" type correction that does not inftuence the
behaviour of the shell in the large, (which is the more important aspect of the example).
Since the omission prevents the development ofedge-effect-type disturbances, the simplified
boundary equations (44), (46), (47) can be used for the analysis.
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The solution point of the circular cylinder is expressed in terms of the variables as
follows:

[NS=p; p=l; N",=N,=JC",=JC,=M=OJ.

All the variables of the problem are now expanded in perturbation series about this
point. The perturbation parameter 8 is selected as some measure of the deviation from
circularity of R(,,).

Thus

and so forth.
It is assumed now that the underformed contour has a continuously turning tangent

and that its radius of curvature R(,,) is sectionally continuous and bounded in 0 < " < 21[.
Only symmetric curves are considered for simplicity. Hence R(,,) may be expanded as a
Fourier cosine series in " :

00

R(,,) = Ro+ L Rncosn".
n=2

(48)

The term with n = 1 is excluded since it does not correspond to a closed curve ([20,
Appendix B]). The quantity

(49)

(50)

is chosen as a measure of noncircularity. It can be shown ([20, Appendix B]) that Ro ~ Ro,
equality being obtained for the circular cylinder only. Hence it is a proper measure. Thus:

R(,,) = Ro[1+8( ~ An cos n,,) +82]

where

(51)

Substitution into the differential equations and boundary conditions, yields the follow
ing equations for the first perturbation (linear terms in 8):

rxNI1.~+ NSI.~ +p(Ns1 - vN"'l)'~ = 0

N sl = PPI

K",l,~ - rxJCt1.~ + 2rx(l + v)NlI •• - (N"'! - vNSl)'~ = 0

KlI.~+CXPI.~+cx(Ns1-vN",d,£ = 0

K",I +rx2(N"'1 +NSl),~~+(N"'l +NS1 ),,,,, = 0

(52)

(53)

(54)

(55)

(56)

(57)
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and at ~ = ±1.
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00

PI = L A.n cos n"
2

N X1 = 0

lJ 1."""+lJ1,,,+Nt = O.

The last equation is now redundant and is to be used for calculating M1 after the equations
are solved. It should be mentioned here that the equations are similar to the membrane
part of the stability equations of the circular cylinder (compare, for example with [12])
except that Pl' is used as a variable instead of "sl'

(c) Solution of the equations
The small strain approximation leads to the inequality P« 1. In this case equations

(52) and (53) are satisfied by a stress function as follows:

Nxl = <P, ""+pa.2t/J, ~~

N sl = 1.Z2t/J,~~+VPtP.""

Nt! = -1.Zt/J,~".

Substitution into the other equations and repeated use of p « 1 lead to:

with boundary conditions at ,; = ± 1 :

<P, ~~ = P2 L An cos ""
I.Z

<P,,,,, = o.
The function <p is now developed as a Fourier cosine series in ,,:

00

<p = L <p" cos n".
n=2

(58)

(59)

(60)

(61)

(62)

The equation for <p" becomes (the v terms have been dropped since they can be shown to
have little influence on the results [20]):

1 (")2 (")4it' <p",~~~~- 2 a t/J",~~ + a <p" = 0

where

(63)
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The solution of the differential equation which satisfies the boundary condition is:

where

937

(64)

w= cosh81cos02sinh81,sin82,-sinh81 sin 82cosh 81ecos 82, (65)
fl.. 28102(cosh201 -sin2 ( 2)

A study of the results shows that for Ii « 1 the contributions of the terms pa.2q,,~~ and
vpq""" to the stresses Nxl and N J1 are negligible. Thus the pterms in (52) and (53) may be
dropped. The same cannot be said about the extra terms in the Codazzi equations (55) and
(56) (the neglecting of which leads to the well known "shallowness approximation") since
they modify n2 to become (n2 - 1) and this effect can be neglected for large n only [12]. The
apparent ability to omit the Ii terms in the equilibrium equations is not a general property.
The inability of the Donnell equations to predict the column buckling of cylindrical shells
is an example of such oversimplification.

Before expressions for the stress resultants are written and in order to improve accuracy,
an artifice is introduced :

The closed cylindrical surface, being multiply-eonnected, requires cesaro-type integral
conditions to assure that it remains closed after deformation (see Appendix B of [20] for
more details). The requirement for angular compatibility is expressed by:

1 (211 d"
2n Jo per,) = 1.

Introducing the series expansion for Pand integrating, one obtains:

(67)

or, to the same degree of approximation:

(68)

It is noted that the use of Po = 1, as before, satisfies (67) to within linear terms in e. It is
suggested, though, that the use of (67) or (68) in the expressions for nlS and for p gives an
improved (second order in e) estimate. The new Po does not have to satisfy the equations
of the first perturbation, but is to be introduced as an imput into the second perturbation.
The special form of (40) which has a linear term in p assures that this imput will be of the
same order in eas other imputs from the first perturbation. The process may be repeated by
imposing (67) on the second perturbation and introducing it as an input into the third, and
so on. It thus seems to be a consistent procedure.
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The expressions for the physical membrane stress resultants now become:

(69)

(70)

(71)

(d) Some properties of the solution

Examination ofthe solution (64) and ofthe expressions for the stress resultants (69H7l)
shows some important features which are summarized below:

(a) The membrane stress resultants approach the results of linear membrane theory as
the pressure decreases or as the shell becomes shorter.

(b) The geometry of the shell approaches that of the original unloaded shell as the pres*
sure goes to zero.

(c) For light loads, the geometry tends to the results of linear membrane theory in the
sense that the same tangential displacements are approached, but the normal displacement
is approached up to linear terms in the deviations from circularity.

(d) The solution series provides convergent and continuous results even if R(,,) or its
derivatives have a finite number of discontinuities around the circumference. It smooths
irregularities in the shape of the undeformed shell.

(e) If, for a given shell problem, R(,,) is regular and y « I, where

(72)

then the shell may be analyzed by linear membrane theory. Ifeither ofthese conditions is not
met, the solution derived here should be used in full.

(f) The deviations from circularity tend to decrease as the load increases or as the shell
becomes longer. For long shells, the solution approaches that of a circular cylinder with
radius Ro.

(g) As the harmonic index increases, the equation for the stress function approaches the
biharmonic equation of plane elasticity. The latter may be said to be satisfied "in the small"
on the surface (in contrast with linear membrane theory which cannot satisfy it).

Itappears, that the solution presented here overcomes the difficulties oflinear membrane
theory but is still consistent with it for lightly loaded, not too long, regular shells.

(e) The curvature formulation

This formulation is more adaptable to cases with angular discontinuities in the circum
ference. Its main disadvantage is that it needs more terms in the perturbation series if the
shell is strongly noncircular.
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The procedure involves introduction of ". = (p)- 1 into equations (40H43) and ex
pansion in a perturbation series as before. On the boundary, I/R('7) is expended as a Fourier
cosine series:

R ~ 00

R(~) = 1+Rot k"cos n'7 = 1+et V"cos n'7

where kIt or v" are the coefficients of the expansion.
Comparison ofthe resulting equations and boundary conditions ofthe first perturbation

with those of the radius-of-curvature formulation shows that the two become identical if
the following substitutions are made:

".1 replaces (- PI); v" replaces (- l,,)

R~k" replaces ( - R,,); Ro replaces [R~ - LR; [1- J.L:(e)2J]t
with these changes all previous results of the first perturbation solution may be used.

For use in cases with angular discontinuities, let X('7) be the angle between the normal to
a plane curve and a fixed direction in the plane. Then, as is well known, the angular incre
ment between two points on the curve is given by :

J
~2 d('7)

X2 - Xl = Ro ~I R('7)'

Hence, an angular discontinuity of (AX) radians is equivalent to a curvature concentration
of

AX
-c5('7 = '70)Ro

where (;('7 = '70) is the Dirac delta function.
Therefore, given a curve with curvature [1/R('7))' and given in addition that the curve

has a finite number of angular discontinuities (AX)j, then the modified expression for its
curvature becomes:

1 [1 J' 1R('7) = R(,,) +R
o
~ (AX),J('7 = '7j)'

As an example, take the circumference of a cylindrical shell under internal pressure p
as two circular arcs of radius r and angular jumps (between the two arcs) of magnitude /l
(Fig. 1). Here:

Ro == r(1 - /l/7t)

/le==--
7t-f3

R~'7) == ~+f3/Ro[b(7t/2)+b(3;) J.
Expanding R~'7) as a Fourier cosine series, one obtains:

R 2{1 00

_0 = 1+- L (_1)"/2 cos "'7.
R('7) 7t 2.4.6
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FIG. I. Two-circular-arc shell.

Note that the coefficients of the series are bounded. Therefore, although the series for
l/R(,,) is not converaent, the series for the solution of the shell problem does conver,e in the
interior of the shelll{1 < l,living rise to a smooth surface. The expression for the circum
ferential curvature of the deformed shell is :

2{J GO

K. = 1+- L (-1)"/2,u;W cos n". (73)
11: 2,4,6

The solution presented here loses part of its accuracy near" = 11:/2, 31t/2. This is due to
the fact that linearization has been performed on locally large changes in curvature. The
effects on the geometry are not too important since the latter is related to the averaging of
concentrations, but the accuracy of the expressions for the stresses (in particular N.) may
be significantly reduced. A more satisfactory approximation for N. may be obtained by
observing that if the first two terms are omitted in (40) as higher order terms, then the
expression for N. would be given by

N. = p/"•.
The last equation may be used to calculate N. after ". has been obtained from (73). The
alternative is to use more perturbation terms.

It must be noted here that the solution corresponds to the case of a pure membrane
only, which cannot accept moments. In a real shell, physical considerations demand that
moments exist along the crease lines of the shell and thus the solution will be modified.
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However, as the pressure increases, a plastic "hinge" is formed along the crease until the
latter is obliterated and the solution (73) should approach the physical situation for such
shells too.

SOME NUMERICAL RESULTS

(a) TWQ circular-are-shell
Using equation (73) and the expression for Ro, the circumferential curvature of the

deformed shell may be written in the form:

b =! n+ P,(" 11)
$S r n-p

where
00

,(,,'1) = 2 L (-I)"/2Jl:(,)cosn71.
""'2.4.6

The values of '(0, 0) and '(0, n/2) (along the minor and major axes at the shell centre) are
plotted in Fig. 1 against the shell parameter "I [equation (72)] for a range of values :

tS. IX S 3; 4xl0-4 SPSlO-2.

It is seen from the graph that a single smooth curve can be drawn through the points with
very minor deviations. It thus appears that within this range of values "I is the significant
parameter which determines the shell behaviour.

(b) Simple Qval
The equation of the oval is given in the form

R(71) = Ro+R2 cos 2rt
The radius of its isoperimetric circle is

Ro =. [R~ - R~]t .

Numerical results are given for the following quantities:

n"(, = 0) = p{[~ - [1- Jl;(0)2]R~]t+R 2Jl;(0) cos 211}

nXX
(, = 0) = - 4p~2 Jl2(0) cos 2'1

ex

The quantities Jl;(O), Jl;(l) and Jlz(O) are plotted in Fig. 2 against the shell parameter "I for
the same range of values as in the previous example. As before, a single smooth curve can
be drawn through the points with minor deviations, so that "I appears to be the significant
parameter which determines the shell behaviour. It appears from Fig. 2 that for "I < 0·2
linear membrane theory gives good results. For high values of "I, nonlinear effects become
significant and soon dominate the solution.
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FIG. 2. Simple oval shell.
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A6CTpllIl:T-)laeTcR HeJlHHeRHaR 3aua'la MeM6paHbi ppH nOMOWH BblpaBHeHHIi Ha KPHBH3HbI H HanpRlKeHHR
IHJlH .lleljlopMaUHH/, B Ka'leCTBe nepeMeHHbIX nOJlR. J.1.ccJle.llYIOTcR npH6nHlKeHHbie rpaHH'IHble ycnoBHlI,
B cMblcne 'IaCTH H3nOlKeHHlI TeopHH.

06cYlK.llalOTClI BalKHble xapaKTepHCTH'IecKHe cBoRcMBa ypaBHeHHR. K HHM npHHa.llJlelKaT cne.llYIOWHe
TeMbI: 3aBHCHMOCTb OT Ha'lnJJbHoil cPOpMbI, THnbl ypaBHeHHR, B03MOlKHOCTb BbIlICHeHHlI aHOMaJlHIi
JlHHeliHoR Ja.lla'lH MeM6paHbI, YCToR'IHBOCTb H 3a.lla'la KpaeBOro 3cPcPeKTa MeM6paHbI. )laeTclI TaKlKe cxeMa
PlI.llOB B03MyweHHR .llJIR peweHHlI ypaBHeHHil.

J.1.cnonb3yeMocTb npe.llJlaraeMoil TeopHH .llJIR peWCHHR npaKTH'IeCKHX Ja.lla'l YKa3bIBaCTCR nYTeM
onpe.lleneHHJI peweHHlI, KacalOwcrocR 3a.lla'lH HCKpyrJloil UHJlHH.llpH'IeCKOR MCM6paHHoR 060nO'lKH no.ll
.lleilCTBHeM ropH30HTaJJbHOR HarpY3KH.


